MATH2050C Selected Solution to Assignment 13

Section 5.6 no. 3, 4, 14, 15.

(3) It is clear that both functions are strictly increasing everywhere. Their product h(x) = x(x-1) satisfies h(0) = h(1) = 0 so it cannot be increasing on [0, 1]. Indeed, if h is increasing, it implies that h is the constant zero function which is clearly ridiculous. In general, the product of two non-negative, increasing functions is increasing.

(4) Let f and g be two positive, increasing function and let x < y be two points in their domain of definition. Then,

$$(fg)(x) - (fg)(y) = f(x)g(x) - f(y)g(y) = (f(x) - f(y))g(x) + f(y)(g(x) - g(y)) \le 0$$

so fg is increasing.

(14) We claim when mq = np,

$$(x^{1/n})^m = (x^{1/q})^p$$
, $x > 0, m, p \in \mathbb{Z}, n, q \in \mathbb{N}$.

We raise the left hand side by n-th power to get

$$((x^{1/n})^m)^n = (x^{1/n})^{mn} = (x^{1/n})^{nm} = ((x^{1/n})^n)^m = x^m$$
.

On the other hand, the *n*-th power of the right hand side is

$$((x^{1/q})^p)^n = (x^{1/q})^{pn} = (x^{1/q})^{qm} = ((x^{1/q})^q)^m = x^m$$
.

So the n-th power of both sides are equal, hence both sides are equal.

Note. So far we define the m/n-th power of x to be $(x^{1/n})^m$. After this problem, it makes sense to define any rational power x^r . So the definition of x^r is independent of the choice of numerator/denumerator in r, that is, x^{m_1/n_1} and x^{m_2/n_2} represent the same number as long as $m_1n_2 = m_2n_1$.

(15) First, we claim

$$x^r x^s = x^{r+s} , \quad x > 0, \ r, s \in \mathbb{Q}$$

Let $r = m_1/n_1$ and $s = n_2/m_2$. Raising to n_1n_2 -th power, the right hand side becomes

$$(x^{r+s})^{n_1n_2} = x^{m_1n_2+m_2n_1}$$

And the left hand side becomes

$$(x^{r}x^{s})^{n_{1}n_{2}} = (x^{r})^{n_{1}n_{2}}(x^{s})^{n_{1}n_{2}} = ((x^{m_{1}/n_{1}})^{n_{1}})^{n_{2}}((x^{m_{2}/n_{2}})^{n_{2}})^{n_{1}} = x^{m_{1}n_{2}}x^{m_{2}n_{1}} = x^{m_{1}n_{2}+m_{2}n_{1}},$$

which is equal to the right hand side.

Next, $(x^r)^s = x^{rs}$. The right hand side is $x^{m_1m_2/n_1n_2}$ and so its n_1n_2 -th power is $x^{m_1m_2}$. The n_1n_2 -power of the left hand side is

$$((x^{m_1/m_2})^{m_2/n_2})^{n_1n_2} = (x^{m_1/n_1})^{m_2n_1} = x^{m_1m_2}$$

so the right and left hand sides are the same.